Emergence of Standards-Based Technology


We Are Now Move,.. TELETOPIX.BLOGSPOT.COM --> WWW.TELETOPIX.ORG

In 1998, the Institute of Electrical and Electronics Engineers (IEEE) formed a group called 802.16 to develop a standard for what was called a wireless metropolitan area network, or wireless MAN. Originally, this group focused on developing solutions in the 10GHz to 66GHz band, with the primary application being delivering high-speed connections to businesses that could not obtain fiber. 

These systems, like LMDS, were conceived as being able to tap into fiber rings and to distribute that bandwidth through a point-to-multipoint configuration to LOS businesses. The IEEE 802.16 group produced a standard that was approved in December 2001. This standard, Wireless MAN-SC, specified a physical layer that used single-carrier modulation techniques and a media access control (MAC) layer with a burst time division multiplexing (TDM) structure that supported both frequency division duplexing (FDD) and time division duplexing (TDD).

After completing this standard, the group started work on extending and modifying it to work in both licensed and license-exempt frequencies in the 2GHz to 11GHz range, which would enable NLOS deployments. This amendment, IEEE 802.16a, was completed in 2003, with OFDM schemes added as part of the physical layer for supporting deployment in multipath  environments. By this time, OFDM had established itself as a method of choice for dealing with multipath for broadband and was already part of the revised IEEE 802.11 standards. Besides the OFDM physical layers, 802.16a also specified additional MAC-layer options, including support for orthogonal frequency division multiple access (OFDMA).

Further revisions to 802.16a were made and completed in 2004. This revised standard, IEEE 802.16-2004, replaces 802.16, 802.16a, and 802.16c with a single standard, which has also been adopted as the basis for HIPERMAN (high-performance metropolitan area network) by ETSI (European Telecommunications Standards Institute). 

In 2003, the 802.16 group began work on enhancements to the specifications to allow vehicular mobility applications. That revision, 802.16e, was completed in December 2005 and was published formally as IEEE 802.16e-2005. It specifies scalable OFDM for the physical layer and makes further modifications to the MAC layer to accommodate high-speed mobility. As it turns out, the IEEE 802.16 specifications are a collection of standards with a very broad scope. In order to accommodate the diverse needs of the industry, the standard incorporated a wide variety of options. In order to develop interoperable solutions using the 802.16 family of standards, the scope of the standard had to be reduced by establishing consensus on what options of the standard to implement and test for interoperability. 

The IEEE developed the specifications but left to the industry the task of converting them into an interoperable standard that can be certified. The WiMAX Forum was formed to solve this problem and to promote solutions based on the IEEE 802.16 standards. The WiMAX Forum was modeled along the lines of the Wi-Fi Alliance, which has had remarkable success in promoting and providing interoperability testing for products based on the IEEE 802.11 family of standards. The WiMAX Forum enjoys broad participation from the entire cross-section of the industry, including semiconductor companies, equipment manufacturers, system integraters, and service providers. 

The forum has begun interoperability testing and announced its first certified product based on IEEE 802.16-2004 for fixed applications in January 2006. Products based on IEEE 802.18e-2005 are expected to be certified in early 2007. Many of the vendors that previously developed proprietary solutions have announced plans to migrate to fixed and/or mobile WiMAX. The arrival of WiMAX-certified products is a significant milestone in the history of broadband wireless.